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Abstract
The asymptotic distribution of an M-estimator is studied when the under-
lying distribution is discrete. Asymototic normality is shown to hold quite
generally within the assumed parametric family. When the specification of the
model is inexact, however, it is demonstrated that an M-estimator with a non-
smooth score function, e.g. a Huber estimator, has a non-normal limiting dis-
tribution at certain distributions, resulting in unstable inference in the

neighborhood of such distributions. Consequently, smooth score functions are

proposed for discrete data.

AMS 1970 Subject Classification: 62E20, 62F10, 62G35.
Keywords and Phrases: Robust estimation, M-estimator, discrete parametric

model, smooth score function.
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Introduction

M-estimation, originally proposed by Huber (1964) to estimate a location
parameter robustly, has since been applied successfully to a variety of esti-
mation problems where stability of the estimates is a concern. There is, for
instance, a substantial body of literature on M-estimation for regression
models; see Krasker and Vlelsch (1982) for a recent review. For further re-
ferences on M-estimation, see Huber (1981).

Much of the popularity of M-estimators can be attributed to their flexi-

LR

bility. Desired properties of an M-estimator, such as relative insensitivity

to or rejection of extremely outlying data points, can be specified in a

XA

direct way since the influence function of an M-estimator is proportional to
its score function; see Hampel (1974) or Huber (1981) for details.

Surprisingly, M-estimation for discrete data seems to have received little
attention. Discrete data are no less prone than continuous measurements to
outliers or partial deviations from an otherwise reasonable model; see, for
instance, data from mutation research presented in Simpson (1985). This
paper investigates some aspects of M-estimation for discrete data.

A useful optimality theory has been developed by Hampel (1968, 1974) for
robust M-estimation of a univariate parameter. His general prescription fa-
cilitates the construction of robust M-estimators with nearly optimum effi-
ciency at a specified model. Proposals for robust estimation of the binomial

and Poisson parameters, for instance, can be found in Hampel (1963). Hampel's

AR
ot~ 4

univariate theory is briefly reviewed in Section 2. Extensions of this opti-

mality theory to certain multivariate models are discussed in Krasker (1930),

“l”.?l{ .

Krasker and Welsch (1982), Ruppert (1985), and Stefanski, Carroll, and Ruoppert
(1985).
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The score function for Hampel's optimal M-estimator is not smooth, that
is, it is not everywhere differentiable. This can lead to complications in
the asymptotic theory when the data are discrete. For instance, Huber (1981,
p. 51) considers the case where the underlying distribution is a mixture of
a smooth distribution and a point mass. He observes that if the point mass
is at a discontinuity of the derivative of the score function. then an M-
estimate for location has a non-normal limiting distribution. Along the same
lines, Hampel (1968, p. 97) notes that the optimal M-estimate for the Poisson
parameter is asymptotically normal at the Poisson distribution, provided the
truncation points of the score function are not integers. He conjectures
that "under any Poisson distribution, it is asymptotically normal (with the
usual variance); however, this remains to be seen."

This paper provides extensions to the asymptotic distribution theory of
M-estimators especially relevant to discrete data, although Theorem 1 is
somewhat broader in scope'. The main results are given in Section 3. Among
the applications of the theory are a more complete account of the asymptotics
of the Huber M-estimate for location and a proof of Hampel's conjecture.
Aside from providing a more complete asymptotic theory for M-estimation, the
results have implications for choosing a score function when the data are dis-
crete. These are discussed in the final sections. In particular, smooth

score functions are proposed.

2. Parametric M-estimation: Definitions, optimality and examples

Suppose X],Xz,... are independent observations, each thought to have dis-

tribution function (d.f.) F , where 6 belongs to a parameter set O; here O is

¢
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‘ a subset of Rd, d21. Define )
| E-f
(2.1) M(t:p,F) = fy(e,t .
) by
. where F is a d.f. on R], p(+,*) is a measurable real-valued function on ::
4 R]><O, and te¢©. Then Tn is an M-estimator for 6, based on a sample of size gi
- n, if it solves an equation of the form {f
(2.2) M(Tn;w,Fn) = %
where Fn is the empirical d.f.. The standard requirement o
\ (2.3) M(830.F,) = 0, 6o, :
and additional regularity conditions ensure that Tn consistently estimates .
6 when the model is correct. E‘
; Suppose now that Oc R]. The influence function at Fe of an M-estimator -3
for 6 has the form .
: e
! a(x,0) = —Jixa0) : e
f{ v (+,8)}dF,
provided this exists. Assume Fe has a density fe with respect to a suitable ;}
measure, and assume the parametrization is smooth. Letting £(x,6)=;ﬁglogfe(x), ;E
the optimal score according to Hampel's criterion has the form o
(2~4) wc(e)([-(xye) - a(s))s '
, where _
N
&
‘ u, lul sc ;:
- velw) = { 2
csign (u), Jul>c, %




and o is defined implicitly by (2.3). This estimator cannot be dominated
by any M-estimator sirmultaneously with respect to the asymptotic variance and
the bound on the influence function at Fe. This is assuming, of course, that
the estimator is asymototically normal at Fe'

The truncation point c(6) determines the bounds on Q(+,8) and hence the
robustness of the estimator to outlying data points. Observe that the maximum
1ikelihood estimator has the form (2.4) with c(8) == and a(8) = 0.

Two examnles given in Hampel (1968) will be of special interest here.

Example 1. If Fe is the normal d,.f. with mean 6 and unit variance then
£(x,8) =x-8. By symmetry a(6) =0, and constant variance suggests setting
c(8)=c. The resulting estimator, with score wc(x'-e). is the Huber (1964)
M-estimator for location.

Example 2. If Fe is the Poisson d.f., with density fe(x)= e'eex/x! on
x=0,1,2,..., then K(x,e)'=xe'] -1. Hampel (1968, n. 96) suggests taking
<:(e):=ce'1/2 on the grounds that £(x,6) has standard deviation e-VE‘ For

_1 1
this choice (2.4) is equivalent to wc(xe h -9 /2 -a(8)). The version

(2.5) v (x6™"2 - 5(0)),

1
where 8(8) =e‘é-+a(e) is defined by (2.3), is slightly more convenient.

3. CExtended asymptotic distribution theory

Conditions for consistency of an M-estimator can be found in Huber (1964,
1967, 1981). Since the smoothness plays no role in the consistency proofs,
consistency will usually be assumed here.

Huber (1981, theorems 3.2.4 and 6.3.1) shows under quite general condi-

tions that if Tn+e=T(G) in probability as n+« then
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(3.1) -nyaM(Tn;w,G) = n'UQ‘glw(xi,e) + 00(1),
i=

where M is given by (2.1). In particular, ¢ need not be differentiable; mono-
tonicity or Lipschitz continuity conditions are sufficient. That Tn is asymo-
totically normal follows immediately from (3.1) provided M(t;y,5) has a non-
zero derivative at 6 and 0(<fw2(-,e)dG<x»; see Corollary 6.3.2 of Huber (1981).
For stronger almost sure representations for Tn under stronger conditions, see
Carroll (1978a, 1978b).

To avoid Lipschitz conditions for score functions like (2.5) that have im-
plicitly defined centering parameters, the following lemma is useful. The
proof is contained in the proof of Theorem 2.2 of Boos and Serfling (1980).

Denote by

v the total variation norm, given by

k
lIhl], = Tim sup } [h(x;) - hix; )1,

i=]
where the supremum is over partitions a-= Xg < Xp<ovn <X = b of [a,b], and the

limit is as a—» -, b+>w,

Lemma 1. Let X be independent, each with d.f. G, and let 6 =T(G).

1’X2""
Suppose 9(x,t) is continuous in x for tedc rd and

]"nllw("t) 'QJ(',G)HV = 0.
t+6

If Tn-+e in probability as n-»«, then (3.1) holds.

Remark. The score functions of Examples 1 and 2 are continuous in total vari-
ation. For the former see Boos and Serfling (1980). For the latter, see

Simpson (1985).
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Theorem 1. If for each te© (A1)-(A3) hold and

-

6

When the underlying distribution is discrete, the set of points where y
fails to have a derivative has positive probability for certain parameter
values. In light of (3.1), it is natural to ask whether M can have a deri-
vative at such parameter values, i.e., whether Tn can be asymptotically nor-
mal.

The following theorem addresses this question. For 8e0c Rd, Fe is as-
sumed to have a density fe= f(-,8) with respect to a o-finite measure u, and

Vg =y(-,8) is measurable for each 6. Let denote any norm on Rd equivalent

to the Euclidean norm. Some regularity conditions are needed:

(A1) There are measurable functions wy = w(+,t) and gt==g(-,t) for which
Jwy fidu, [lv 19 du and [w,g,du are finite and, for some &>0,
(i) lfs- ftl < |Is -tllgt, and

almost everywhere [u] (a.e.) when ||s-t]| < §;

(A2) There is a measurable R9-valued function #,=#(-,t) such that

T.
[f - fo - (s-t)

¢ = o(|ls-t||) a.e.;

(A3) b TYy 2.e. as s-t.

(3.2) M(t;Ft) =0
then
(3.3) D M (s3F) oy = -jwtftdu,

where DS denotes vector differentiation, and where the dependence of M on y

has been suppressed.




2 ARt olieh AP IR * bl e Rl o g Ao gt e d ' ¢

Proof For s,te®

0= M(s;Ft) - M(t;Ft) + M(s;FS) - M(s:Ft) -
] = M(s3Fy) - M(t;Ft) E
(3.4) + M(t;FS) - M(t;Ft) + Rt(s), -
red
= - - e
where Ry(s) = [(wg vy ) (- £y )du r
and (3.2) was used. The integrand of Rt(s) is dominated in absolute value '
by 2||s -t|hutgt on ||s -t|| <& because of (A1). Hence, by (A3) and Dominated Ei
Convergence, ii
(3.5) R, (s) = o(lls - t]]). P
Similarly, (A2) and Dominated Convergence imply
: : Teo #
IM(t:sF ) - M(tsFL) - (s-t) fyf dul
T, R
s flogl 1fg-fo-(s-t) F du 0
= of]|s-t]]) as s~t, -
N
N since the integrand is dominated by 2||s - t|] [wt|gt on ||s-t]| <8. From :
‘ (3.4) to (3.6) conclude %
- , T -
- [M(s3F,) = M(t;F,) + (s-t) fwt?tdul = of|]s -t]]). -
-
X

Hence D M (s;Ft) exists at t and is given by (3.3).

Remarks. 1. Note that Yy need not be differentiable.

2. When wt=‘et= ?t/ft, (3.3) generalizes the usual information identity.




LKA (DL x

3. Huber (1981, p. 51) observes a special case, namely (3.3) holds when u

- “:.,.—

ROOe o

is Lebesgue measure, Ww(x,t) =y(x -t), where y(+) is skew-symmetric about zero,
and f(x,t)=f(x-t), where f(-) is differentiable and symmetric about zero.

4. Equation (3.3), when it holds, also guarantees that the influence function

[ 4

. at the model, given by
-1
D MssF ) [ wlx,t)

is defined for each te¢ 0, provided that [wtftdu¢ 0. &

Example 2 (continued) Suboose f(x,t) = e tt%/x! on {0,1,2,...}, t>0. Recall .

1
that the ootimal M-estimator has the score y(x,t) = wc(xt'/5- R). This esti-

mator is known to be asymntotically normal at the Poisson distribution when t

is in one of the open intervals where neither of the truncation points

1
t/z(Bj:C) is an integer; see Hampel (1968, p. 97).
To show that it is asymptotically normal at every Poisson distribution,
as conjectured by Hampel, first use Theorem 1 with

e26f(x -1,t+8) + 6'](e<S -1-8)f(x,t), w(x,t) = ¢ and

g(x,t)
F(x,t) = f(x-1,t) - f(x,t). Note that c>1 is sufficient for 8 to be con-
tinuous, and hence for (A3): see Simpson (1985).

Since temma 1 applies and 0'<fw§ftdu-sc2 for c21, it follows that the
estimator is asymptotically normal at every Poisson distribution if it is
consistent. For consistency see Hampel (1968, p. 96) and Theorem 2 of Huber
(1967).

In Theorem 1, (3.2) allows smoothness of the parametrization to be sub-

stituted for smoothness of y within the assumed parametric model, so that

the estimator is asymptoticaily normal under further conditions. If the

et
e



specification of the model is inexact (as is often suspected), no result like

(3.3) is available. In certain cases, it is still possible to obtain the
limiting distribution of T from (3.1).

Assume for simplicity that © is an open subset of the real line. The
score functionsused for robust estimation are generally at least piece-wise
differentiable. The one-sided derivatives of M(t;G) will then exist, in

general, even when M fails to be differentiable. Urite
m(t36) = S-M (t;6)
b dt t ]

when the derivative exists. By a well-known result from calculus, if
m(6-3;5) and m(6+;G) exist, they are equal to the corresponding one-sided

derivatives of M(t:G) at 9; see, e.g., Franklin (1940, p. 118).

Theorem 2. Suppose for some 8 interior to © that M(6;G) =0, and let Tn be a
zero of M(t;Fn), n=1,2,..., where Fn is the empirical d.f. Assume the fol-
Towing:

(81) M(e6-;G) and m(6+;G) exist finitely and are non-zero and of

the same sign;

2 _ 2.,
= f‘pedﬁs

(B3) T,>© in probability as n+«, and (3.1) holds.

(B2) O<o<wx, where o

Then
1
(3.7) 1im  sup |pr‘{n/2(Tn-e)gz} - H(z)| = 0,
N+ =w<Z<0o
o(|m(o+;6)|z/a), 220
where H(z) = {

¢(|m(6-3;6)|z/0), z<0,

and ¢ is the standard normal d.f.

Xy,
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Remarks. 1. Huber (1964, o. 78) alludes to a similar result for a location
estimator.
2. The requirement that m(6 + ;G) have the same sign is actually implied by -

the remaining conditions. If the one-sided derivatives were to have opposite

signs, M(t;G) would not change signs in a neighborhood of 6 and (3.1) would .

not hold. :

The proof of Theorem 2 is deferred to the Appendix. i

- Example 1 (continued) Recall that the Huber M-estimator for location has the *
" score Y(x,t) = wc(x-t). For any d.f. G, M(-=;G) = ¢ = -M(~;G), and M(t;G) is 3
EE continuous in t so it has a zero 6. Assume 8=0. This is unique if i
2 G(c-) >G(-c+), in which case Tn-»O in probability by Proposition 2.2.1 of 4
s Huber (1981). Since Ve is continuous in total variation, (3.1) holds by E
.E Lemma 1. Letting ¢(x,t) = d/dt v (x-t) = -yllx-t) if it exists, observe ;
) that -P(x,t-) = I{-c<x-t<c) and -P(x,t+) = I(-c<x-tsc), where I(+) de-
g notes the indicator function. Bounded convergence yields -m(J-;6) =G(c-) - G(-c-) N
51 and -m(0+;G) = G(c+) - G(-c+). Hence, by Theorem 2, nl"zTn is asymptotically E
> normal if G(c+) - G(c-) = G(-c+) - G(-c-); otherwise, it has a 1imiting dis- .
; tribution consisting of the left and right halves of two normal distributions ?
; with different variances (cf. Huber (1981, p. 51)). E
2 4. A counterexample :
i It is instructive to examine the extent of the non-normality that occurs S
: in a specific example. Consider again the optimal M-estimator for the Poisson E
parameter. The score function is :

-c, x<£(t) R

L p(x,t) = wc(xt'l/"’ -8) = xt:'l/2 -8, £{t) <x<h(t) .
@ C, h(t) s x, N
, N




11

where £(t) = tl/z(B(t) -c) and h(t) = tl/z(s(t) +c).
Let G be the actual d.f. and let 6=T(G). The simplest situation is when
8 is small. Assume henceforth that £(6) <0<h(8) = 1. Calculation yields
8(t) = c(ct-1) for £(t) <0, 0<h(t)<1, and B(t)=clef(1+t) 1 =11 +t2(1+¢)"]
for £(t) <0, 1<h(t)<2. Since B is continuous, equating the two expressions

at 9 gives

1
(4.1) 62e% = 71,

The one-sided derivatives of B at 6 are B'(8-) = cee and g'(6+) = %cee('l +e)'2,

where (4.1) was used. Note that B is strictly increasing at 8. Since

Yelc-) =1 and y (c+) =0,

(4.2) -p(x,8-)

"
—
O
(1]
-
x
L
o

and %—cee (1 +e)’2, x=0

-p(x,64) 17cee {e'] + (1 +e)']}, x=1

0, x=2,3,...

Suppose G is a mixture of a Poisson distribution F_ and a point mass at an

t
integer z, i.e., G=(1-¢)F +es,. Assume z>h(t) so ¥(2,64) =0. From (4.2)

and (4.3)

m(o+;6) . 1.t , Ist
(4.4) ﬁ%ﬁ;‘ =205t )

where m(6-3;G) = -cee't('l ~¢). The ratio (4.4) is unity only when t=0, which

corresponds to e=0 or z=t. By Theorem 2, the limiting distribution of

1
n/Z(Tn-e) consists of the right and left halves of two normal distributions.




i ‘
The ratio of their standard deviations is (4.4). ‘

Solving 0 = M(83G) = c{1-(1 —e)ee-t} yields t=06+10g(1-¢). Table 1

shows the values of t and (4.4) for several values of ¢ when 6 = 0.25 and v
c=0""2e™®=1.5576 ... (see (4.1)). In addition, the effect on a nominal .05 g

tail probability is shown. . e

For very small values of € the effect is minimal, which accords with the .

robustness of Tn in the sense of weak* continuity (see Hampel (1971)), since
it is asymptotically normal at the model. As ¢ increases, however, the ef-
fect becomes more serious, and inference based on Tn can be substantially
biased.

For related work see Stigler (1973), who observes that a bias of this

P R
LA N N N
3 o v e

type can arise when the trimmed mean is used for discrete or grouned data.

R

-

'I

. ;:
Table 1 Effect of contaminating mass € with 8 = 0.25 fixed &_
€ t r=(4.4) $(-1.645r) .
0 0.25 1 .05

0.01 0.24 0.976 .054 -~
0.05 0.199 0.877 .074 -
0.10 0.145 0.748 .109 y
0.15 0.087 0.610 .158 o
0.20 0.027 0.465 .222 ey

5. Smooth score functions X
In the example of the preceding section, one might argue that the para- ;ﬁ.
8¢
meter values where problems arise are unlikely to occur in practice, or that ?;j

»
c can be changed slightly. It is not, however, the non-normal limiting dis- -

tribution of Tn at certain distributions that is of concern, but the insta- Q&

L9

b <,
. bility of inference based on Tn near those distributions. This phenomenon tﬁ
5
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can alternatively be interpreted as a discontinuity of the asymptotic variance
functional V(T(G);G) = {m(T(G);G)}-]Iwi(G)dG {m(T(6)36)}™'; cf. Huber (1981, p.
51). In the neighborhood of a distribution where V is discontinuous, estimates
of the variance of Tn may be unstable.

Instability of tyis type can be avoided by requiring the M-estimator score
function to be smooth, for example, by replacing wc(-) in (2.4) with a smooth
approximation. A natural way to construct such a function is by rescaling a
smooth distribution function.

Suppose F is an absolutely continuous d?f. with density f symmetric about

zero. Then
(5.1) W) = 2elF gy - 3

is monotone increasing, skew-symmetric about zero, and satisfies y(«)=c and
p'(0)=1. Observe that Ve is obtained from (5.1) by taking F to be the uni-
form distribution on [-%,%]. This can be approximated arbitrarily closely
by a symmetric beta distribution with a small value for the shape parameter,
e, FX) = {(%+x)(Y% -x)}2 on [-55,95].- The resulting score function is
complicated, however, and its second derivative has jump discontinuities. A
more convenient choice is the logistic distribution, which leads to the smooth

function
Lc(x) = ¢ tanh (x/c).

This has appeared previously. LC(X<-t) is the maximum likelihood score for
the location of a logistic distribution with scale 1. Holland and Welsch
(1977) include an M-estimator using Lc in a Monte Carlo study of robust re-

gression estimates.

For the important special case of estimating a Poisson parameter robustly,
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a smooth version of the optimal M-estimator solves

n
(5.2) n! .zch(xit'l/z -8(t) = 0,
i=

where g8 is defined in the usual manner.

Table 2 gives asymptotic variances V6 and bounds Yg ON influence functions
for the estimator defined by (5.2), labeled Lc’ and the optimal estimator,
labeled Ve In each case ¢=1.5. The calculations are at the Poisson model,
and Ve and Yq are stabilized by dividing by 6 and el/2 respectively.

Note that Ve/e is the asymptotic relative efficiency of the maximum like-
lihood estimator (sample mean) with respect to the corresponding M-estimator.
The asymptotic variances for the logistic score are slightly smaller than
those for the "ontimal" score. This is possible because the bounds on the
influence function of Lc are slightly higher for Ve- In terms of performance

at the model, there appears to be little difference between LC and wc.

Table 2 Asymptotic variances and influence function bounds at the Poisson model

Mean /] L

¢ Y, ¢ Y,

3] Vele ye/e ve/e ye/e
0.1 1.052 3.16 1.048 3.27
0.2 1.107 2.24 1.081 2.53
0.3 1.138 1.98 1.094 2.29
0.4 1.114 2.00 1.095 2.19
0.5 1.092 1.98 1.083 2.14
1.0 1.071 1.84 1.059 2.07
2.0 1.057 1.74 1.045 2.04
5.0 1.043 1.75 1.038 2.02
10.0 1.040 1.74 1.035 2.02
100.0 1.037 1.73 1.033 2.01




6.

Further remarks

‘;':')"?‘ 'r'V

The need for smooth score functions is most clear when the data consist of

counts. In this case every deviation from the model involves point masses. ﬁQ

. An important consequence of Theorem 1 js that Hampel's optimal estimator ;'
(2.4) is indeed optimal as claimed when the model distribution is discrete. "

" It would be disturbing if the theory were to break down at a countable number ;;
of parameter values. Moreover, the smooth versions discussed in Section 5, ﬁgv

which provide more stable inference, are justified for every parameter value 2

as being nearly optimal. ‘%

Although the discussion has focused on ;he score functions arising from ;:

Hampel's optimality theory, it is not limited to that context. For instance, H,

a score based on Hampel's three part redescending y (see Huber (1981, p. 102)) ?:

. will be prone to the same difficulties, and a smooth version will be more stable. :?1
Appendix. Proof of Theorem 2. ~

Since the d.f. H is continuous, uniform convergence in (3.7) will follow g'

from pointwise convergence via Polya's Theorem (Serfling (1980, p. 18)). ;3j

Write M(t) for M(t:G) and m(t) for m(t;G). denote by U(S) the set i

(t: 0<|t-8]<8). By (Bl1), m is defined on U(8) if & is sufficiently small. ;;

Moreover, given € >0, there is a § for which te U(S) implies EE

“n

Im(t) - m(e-)| < e if t<o N

) and i;
.

Im(t) - m(e+)| < e if t>6. N

Choosing e <min{|m(8-)|, |m(6+)|} then guarantees that [m(t)| is bounded Et

away from zero on U(8). Fix such a 8. "o

..........
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Ve [
" Since M(8) = 0, teU(S) implies F
'
’ (A.1) M(t) = m(t)(t-8) -
- :
N for some t strictly between t and 8, by the Mean Value Theorem (which only y
Y .
: requires one-sided derivatives at the endpoints of the interval on which it "
is applied). Since m is bounded away from zero on U(&), (A.1) shows - I
X [t-6] = 0(|mM(t)]) -
>
as t+96. The right hand side of (A.1) equals 3
: 2
. ’
- (A.2) D(t)(t-8) + R(t), “
‘. '
where
- D(t) = m(8+)I(t>6) + m(6-)I{t<8), ¢!
- R(t) = [{m(t) - m(e+)}I(t>0) + {m(t) - m(B-)}I(t<8)](t-9), o
¥ U
: ¢
- and I(A) is theindicator for the set A. Note that (A.2) also holds if t=9. *
Since R(t) = o(|t-8]) = o(|M(t)]), (A.1) and (A.2) yield ;
(A.3) D(T In"2(T_-8) = n2M(T ) + O(|n’2M(T })
o ) n n n nttte .
“~ .
: ;
i Because of (B2), (B3) and the Lindeberg-Levy central limit theorem, the right
N hand side of (A.3) converges in distribution to a N(O,cz) random variable, Q
- .
N and, hence, so does the left hand side. E'
.\
- To obtain the limiting distribution of Tn’ partition its range and consider , B
cases. If z<0 then '.
; ;
Ai’ .¢

1
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while

pr{nlz(Tn-e)sz, T <8} = pr{lD(Tn)[nl/z(Tn-e) < |D(T )|z},

Since D(Tn) = m(6-) when T, <8, and D(t) does not change sign on (6 -8,0+§)
by (B1), (A.3) implies that this last probability converges to ¢(|m(s-)]z/0)

as n+«, Similar arguments establish that, for z>0,
2 7 1
prin (Tn-e)sz, Tn<e} = pr{|m(8-)|n (Tn-e)<0} > 5

and

pr{nl/z(Tn-e) <z, Tn>6}

= pr{0< |m(e+)|n‘/2(rn-e)sz|m(e+)|} ~ o(|n(8+) |2/0) - 3
and finally

s _ A 1
pr{n (Tn-G)SO} =1 - pr{|m(6+)|n (Tn-e)>0} >3

as n->», The result follows by collecting terms.

<,

/7.

Xy,
-

L%
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